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Abstract, Classical scattering in the Liouville field theory (LFT) is essentially finite-dimensicnal,
and in some cases the classical S-matrix can be represented as a transformation of the Poisson
group SL(2, R). Motivated by this and using conjectural quantum analogues of soms ingredients
of the classical modei, we find an exact quantum S-rnatrix without constructing the quantum LFT
in full. The quentum S-matrix is explicitly represented as a transformation of the quantum group
8L,(2,R), and for a particular implementation, the S-matrix is shown to be unitery (unitarily
gentrated),

1. Introduction

It is widely believed that there is no scattering in the Liouville field theory (LFT) in an
infinite volume [1]. This belief, however, finds no confirmation at the cfassical level
[2,3]. Moreover, for naturally chosen phase spaces of the model, any fleld configuration
exhibits non-trivial scattering, and the classical §-matrix takes the relatively simple form of
& transformation of the Poisson group SL(2,R) [3]. So it is reasonable to expect that the
quantum S-matrix is non-trivial and ‘finite-dimensional’, and can be found exactly in closed
form without explicitly constructing the quantum LFT. This would be especially interesting,
because LFT still resists a satisfactory quantization, although the explicit classical solution
is known, In the present paper we speculate on a possible quantum generalization of the
classical model and succeed in representing the quantum S§-matrix in closed form as a
transformation of the quantum group SL,(2, R).

In the remainder of this section we recall the basic constituents of the classical model,
our notation being as close to those of [3,4] as possible, In section 2 we propose a
quantum generalization of the classical objects and carry out various checks. In particular,
the asymptotic fields are introduced and their commutation relations are calculated. In
section 3 the scattering transformation is derived, and it is shown that the S-matrix appears
to be unitary (unitarily generated) in a particular implementation.

A general solution to the Liouville equation

Dy — Ppx + 462 =0
which is an equation of motion for the LFT, has the form [4,5]

e~ %N = Q. (xNTQ-(x7). (LD
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Here T is a 2 X 2 real matrix (‘c‘ 2) withad —bc=1,ie. T € SL(2,R); xt =x 41t are

the cone coordinates on the two-dimensional Minkowski space; the 2-row €2.(x) and the
2-column £2_(x) are real and satisfy the Wronskian condition

0
-1
1
0

L W(1-P)=(01.-1,0 =P ()@ QLx) =

where P is a permutation matrix, i.e.

P =

QO = QO
Qo= o
- o O Q

I
0
0
0

In the case of a singular field &, the right-hand side of the equality (1.1} is not positive
definite, The corresponding sign function is assumed to be incorporated in the exponential
function of the left-hand side.

The phase space of the model, Poisson structure and £ may be chosen so that the
following Poisson brackets hold (see [4]):

1 0 00
110 -1 g 0
@ =rTeT = - 1.
(TRT}=[nT@T] r 710 4 -1 0 1.2
0 0 01

(the square brackets designate the commutator; this formula equips $L(2, R) with the
structure of the Poisson Lie group)

{Q.(x) @M} = QX)) R QNI (x —¥)
R.@RQ_ (M} = —rix — Q) @ 2_(¥) (1.3)
Q:0)92_(M=0  {2.(x®T}=0

where

| ifx30

r{x) = PrPo(x) — ro(—x) 8{x) = {
0] ifx <0,

All the brackets (1.2), (1.3) are invariant under the action of the Poisson group SL(2, ).

This property together with the piecewise constancy of »{x) ensures the local commutativity

of the fundamental field & [4].
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2. Quantum analogues of the classical objects

The quantum analogue of (1.2) is well known [6, 7] and has the form

R,TRT=TQ®TR, 2.1)
where
q )] 00
S0 g—¢g7 1 0 )
R, =g~ Yy
=4l 1 000 ?
0 0 0 ¢

Here % is the Planck constant and the matrix elements of T, as well as those of £+ below,
are implied to be real (self-adjoint). We also assume that the quantum determinant of T is
unity:
def -1
det, T =ad —gbc=da—-g  bc=1. (2.2)
The quantum analogue of (1.3) looks as follows:

Q4 (x) @ QL() = 0.+ @ ()R ~ ¥)

Q)R- =R"x - N2 Q_(x) 23)

24(x) @ Q_(y) = Q-(y) @ £24(x)

Q2:(xX)RTP=T@Q+x) Q)R T=PTrea_(x)
where

R(x) = R;'6(x) + R,6(—x).

The commutation relations of the kind (2.3) were previously suggested in the context of
the theory in a finite volume {8]. We assume that they are somehow implemented in the
Hilbert space of the model in an infinite volume. The field e=®¢*) is given by the same
formula as in the classical case, i.e. by (1.1). Note that we do not make any attempt here to
define the fundamental field ®(z, x) itself. A reasonable character of the assumptions made
is supported by a number of checks that follow.

(1)} In the classical limit & — @, (i/ﬁ)[-, ] — {., -} the commutation relation (2.1) turns
into {1.2) due to the expansion

PR, = 1 +ihr +O@®%) B0,
Likewise, the commutation relations (2.3} turn into (1.3) due to the expansion
PR(x) = 1 — ihr (x) + O(%%) B — 0.
(2) The commutation relations (2.3) are self-consistent due to the Yang—Baxter equation

I®Rx—y) Rx-72)®1. 1 R(y—2) ..
=Ry-)81'18Rx—-2)-Rx-y®1
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which looks like the Yang-Baxter equation with a spectral parameter, but, for different
locations of x, y and z, it reduces to various forms of the same Yang-Baxter equation (for
R,) without a spectral parameter:

This last equation expresses the self-consistency of (2.1},

(3) All the commutation relations (2.1), (2.3) are invariant under the action of the
quantum group SL,(2, R). This property together with the piecewise constancy of R(x)
ensures the loeal commutativity of the field (1.1) (see the next point),

(4) The following caleulation demonstrates the commutativity of the field (1.1) for the
spacelike separation (y* = y s ¢):

e=?le=®0N = QL (xrMTQL () Ru(YITR-G)
=0T TOT Q-7 QR
= Q:(") @ U HRET = yHT @ TR (x™ =~ y7IR-(y") @ V-(x7)
= Qe (rH @ Q™) TO T RxY ~ yHR(x~ —y7)8_(7) @ Q- (x7)

=1

= Q. ONTR_O7) ® QexrH)TQ(x™) = e~ Ple=00H)

(the underbraced quantity is equal to unity only for spacelike separation, i.e. for (x* —
yHE==y7) > 0

(§) The commutation relations (2.1}, (2.3) are compatible with the reflections of space
and time. This is ensured by the following properties of the R-matrix:

1
R; =R, oy ®@01Ry-i01 @0 = R,:,'t oy = (? 0) ' (24)

See appendix A for details,
(6) A plausible form of the quantum Wronskian condition looks as follows:

' (=) q'? -1
4 (0) 8 0P = ey (0,47, -1 0)
I @)
PO (@ o= 42— | 7
* ISR
0

where the colons designate some (unknown) regularization of the operator product with the
coincident spatial points, and P{™ is a quantum antisymmetrization matrix, i.e.

0 0 0 0

- q!*R 1 0 g' =10
P(-)='¥ q q — 2.6
4 g+g= g+gt |0 -1 g O 26)

0 0



Exact quantum S-matrix 5379

We believe that the condition (2.5) is not an essentially independent one but a consequence of
the commutation relations (2.1), (2.3) in the case of irreducible representation. Nevertheless,
this condition provides the normalization for the homogeneous equations (2.3). Apart from
the usual reference to the classical limit, two arguments may be adduced in favour of (2.5).
First, the equalities (2.5) are compatible with the reflections of space and time. Second,
they are invariant under SL,4(2, R), which may be verified by using the following relations:

POT®T =P dety T  TOTP{ =P de, T, @7
Lat us now introduce asymptotic fields by the same formulae as in the classical case {3

etalis) n¢<x*)r(é)a=ic1.oam=cx=) =0.cHTR.T)  @8)

g hnl) o n+(x"’)T(?)d=’(0, DNTR-¢™) = Q4 HFR-G7)  (29)

where the diagonal matrix elements of T, ¢ and 4, are assumed invertible (see the discussion
of this assumption in the next section), and the notation for two matricas is introduced:

~ (& b & [bd7¢c b
T-(c ca""b) T_( ¢ d)'

These matrices are real and satisfy the same commutation relation as T (2.1) with the same
R, but with
det, T=0  det,T=0 2.10)

(irrespective of the value of det, T'). In particular, this means that the asymptotic fields are
real and locally commutative. Motsovet, we can calculate their commutation relations in
full. To accomplish this we need one formula, which will be now derived. It follows from
the definition of Pq(" (2.6) end its property (2.7) that

RT®T=T@TR, =q'*T@®T =g~ 3(g+ ¢~ )P\ det, T

Thus, taking into account (2.10) we obtain
RT®@T=TeTR =¢"Tof
or equivalently

RTOT=To TR =(g7'%0) +¢"8(~x))T 0 T. @.11)
The same is true for T replaced by '? The calculation of the commutation relation of the
in-field (2.8) runs much the same as in the case of the field e~?, see point (4) above, but

now the underbraced quantity is muitiplied by T ® 7 from the left, and the relation (2.11)
immediately leads to the following commutation relation:

¢~ AnlFg=An() = g=An(hN)g=Anln) (g=1/2g(x+ o y¥) 4 g1/ 2G(y+ — xF))
% (¢7128(x™ = y™) + ¢80y~ = x7) ™
g~ f=-y2=(@—-5t<0 t>5
= e~ AnlemAu) £ if (v = y)2 = (t—8)2 >0 (2.12)
q fx=yP2—=(t—-52<0 t<s
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In appendix B we give another derivation of (2.12), which is closer to the respective classical
calculation [3] and may be useful for other models. Note that (2.12) is the very relation one
could expect to obtain for e~*» starting from the standard free-field commutation relation
for A

%[Ain(z, £), An(s, )] = Lsign(e* — y*) ~ Lsign(e™ — y7).

Using (2.11) with T replaced by f, we may prove the commutation relation (2.12) for the
out-field as well.

The question as to whether or not the field e=® (1.1) interpolates between the fields
e~ and e~4m defined by (2.8) and (2.9) is unanswerable without precise knowledge of
the specific representation of the algebra (2.3). Here we only note that in the classical case
the asymptotic condition for the exponents looks as follows:

g~ Ot _ gmdnltrtun) - (1) t— —oc forallx,vekR, [v|<1.
Both exponents grow in this limit, so for the fields themselves, we have

®(,x+vt)— Apt.x+ut) =0 t—=>—oo forallx,veRkR, |v|< 1.

3. Quantum S-matrix

By definition, the scattering transformation maps the in-field (2.8) onto the out-field (2.9).
As may be readily noticed, such a mapping non-trivially transforms only 7, leaving 2=
unchanged (provided be is invertible), Denote the restriction of the scattering transformation
on T as &', then it looks as follows:

a ¥
S(TY = (C’ d')
ghe d’—dl + gbe

I___b l= , n’=
b ¢=¢ N I+qbca gqbc

3.1

The invertibility of ad = 1 4 gbc implied here and also assumed in section 2, is discussed
below. It should be emphasized, however, that the non-invertibility of bc does not prevent
the S-matrix from existing, but only means that it cannot be represented in such a simple
form as (3.1). The formula (3.1) for the quantum LFT S-matrix is the main achievement of
the paper.

Let us discuss the problem of invertibility of @, &, ¢, and 4 provided that they are
implemented as self-adjoint operators in the Hilbert space H. The commutation relation
{2.1) in terms of the matrix elements of T looks as follows:

ab = gba ac =gqca bd = gdb ed = qdc

(3.2)
bc = cb ad—da:(q—q'l)bc

(recall that |g| = I and in addition we now assume g # X1, i.e. 0 < [A] < 2x). First of
all, a precise sense in which these commutation relations are understood must be specified.
We shall assume that there exists a linear set D dense in H and such that:



Exact quantum S-matrix 5381

(13 D c D(a) N D(b) N D(c) N D({d);

2)aDCD,bDCD,cDCD,anddD C D;

(3) for all £ € D, abf = gbaf, acf = geaf, bdf = qdbf, cdf = gdcf, bef = cbf
and adf — daf = (g — g~ Dbcf;

4 rhc operators a, b, c and d are essentially self-adjoint on D;

(5 P,L '‘Dc D(z=a, b, ¢, d), where PJL is the orthogonal projector on the proper
subspace of the operator z, corresponding to the eigenvalue A

Under these assumptions the Hilbert space H decomposes into an orthogonal sum:

5 .
=P (3.3)
J=1

where H;, j = 1, 2, 3, 4, 5 are invariant subspaces of the operators a, b, ¢, and d such
that:

(1) in H; the operators a, b, ¢, and 4 do not have a pointwise spectrum;

(2) in H; the operators a, & and 4 do not have a pointwise spectrum, and ¢ = 0;

(3) in Ha the operators a, ¢ and d do not have a pointwise spectrum, and b = 0;

(4) in H, the operators @ and 4 are invertible, and 6 =0, c = 0;

(5) in Hs det, Tf =0 for all f € D.

Obviously, the subspace Hs cannot appear in the Hilbert space of representation of the
algebra (3.2} with det, T = 1. In particular, this means that in the representations with
det, T = 1 the operators @ and d are always invertible, thus, we may legitimately use
expressions (2.8) and (2.9) for the asymptotic fields. It is interesting to compare this with
the situation in the classical model, where a and 4 may vanish on & zero-measure portion
of the phase space (in the case of singular field)., For such exclusive field configurations
the asymptotic fields possess non-d’ Alembertian components [3].

In the case of an irreducible representation, the decomposition (3.3) consists of only a
single summand. Jf it is Hy, it must be one dimensional, so that ¢ and d = 1/a are nothing
but real numbers. This is the only representation of (2.2), (3.2} by the finite-dimensional
matrices, becanse in the spaces H; » 5 the operators @ and d possess a continuous spectrum.
In the space H, all the relations (3.2) are a consequence of

ab = gba. (34

Indeed, the combination » = cb~' commutes with everything, so in an irreducible
representation it must be a non-zero real number. For given » € R, » # 0 and & and
b obeying (3.4), introduce ¢ and 4 ag follows:

c=xb  d=a"'(1+xqb?). O 3s)

Then (2.2} and (3.2) are satisfied. The relation (3.4) is the only independent one in the
space H; as well. This space may be regarded as the limiting case of H; when » = 0.
Likewise, the space H3 may be regarded as the limiting case of H; when » = &0, the only
independent relation being ac = gea.

Only the space H; meets the invertibility condition of bc needed for the scattering
transformation to be represented in the form (3.1). Let us describe the S-matrix (3.1) in
more detail for a particular representation of (3.2) of the type H,. Let P = (h/i)d/dx and
Q = x be the standard differentiation and multiplication operators in H; = L?(R). Define

a=e* b =el?
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These operators together with ¢ and 4 given by (3.5) satisfy the relations (2.2) and (3.2),
» being a parameter of the representation. As a common domain D one can choose a
set of functions of the kind g(x) cxp(—%xz), where g(x) is an entire function of order
not exceeding 1. Provided x > 0, the S-matrix (3.1) in this reptesentation is unitarily
generated, i.e.

a' =s"las b =sbs ¢ =s5es d =s"lds (3.6)
where s is & multiplication operator: sf(x} = s(x)f(x) for all £ € L2(R), the function
s(x) being given by

i ffoe log £(e) %z
§(x) = oxp (E f.w 1+ axp(?:;r(x = y)/IAl) dy) §e) = 1z @7

The unitary operator s is defined by (3.6) uniquely up to multiplying the function s(x) by
a unitary constant,

In the described representation of the algebra (3.2) we have g > 0, b > 0, The unitarity
of the scattering requires that x > 0, and hence ¢ > 0, 4 > 0 too. Recall that in the
classical mode] the inequalities 2 > 0,4 > 0,5 20, ¢ 2 0 (or equivalently 2 <0, d < 0,
b £ 0, ¢ € 0) constitute a necessary condition for the local fields to be non-singular [4]. At
the same time, there are difficulties in Hamiltonian interpretation of the singular asymptotic
fields [3]. So the necessity to choose » > 0 may indicate that the quantum analogues of
the singular fields are ill-defined, at least some of them.

A similar representation of the algebra (3.2) in L3(R) with » = 1 was described in [6].
In that representation the matrix T looks a bit more symmetric:

e PR T+ nel et @2
- e/ ePitTFrele’?)

This implementation of the algebra (3.2) is unitarily equivalent to that described above, and
may be obtained from the latter by the similarity transformation (-) = #~'(-)u, the operator
¥ being multiplication by the function

_ i o2 log(1 + xe”)
uw = °xp( 2 /:m exp(2m(x — 9)/IA}) + 1 dy) '

The S-matrix in this representation is described by the same formulae (3.6), (3.7).

Appendix A

The time reflection 7 is an antilinear automorphism of the algebra {2.1)-(2.3) that acts as
follows:

O, x) = (—t, %) T* =0T 0,
QL =)oy QL) =aRLk).

That v is an antilinear automorphism is ensured by the second equality in (2.4).
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The space reflection o is a linear automorphism of the algebra (2.1)~(2.3) that acts as

follows:

7 (2, x) = b, —x) T% = (—1)*-TT(=1)"

Q% (%) = QT (—x)(-1)* Q7 (x) = (=1 QL (~x)
where, on the classical level, n.. is the number of eigenvalues of the zero-energy Schrédinger
equation whose pair of independent solutions is £2..(x). ». has an analogous meaning. Inthe
quantum model, nx are supposedly self-adjoint operators with a discrete spectrum, which
commute with evervthing, so in on irreducible representation thay must be non-negative

Integers. The condition n. = 0 is necessary for the locel fields to be nen-singular, That &
is a linear automorphism is ensured by the first equality in (2.4).

Appendix B

Here we give another derivation of the commutation relation of the in-field. The column
() ® (3) and the row (1,0) @ (1, 0) are eigenvectors of the matrices R(x) and R~!(x), i..

1 1 ] 1
R(x)( ) ® ( ) = (g”'%6 (x) + ¢'726(—x)) ( ) ® ( )
0 0 0 0 ®B.1)

(1,00 ® (1, 0R™ (x) = (¢720(x) +¢"%8(-x)) "' (1, 0) ® (1, 0.

The following chain of transformations is nothing but a straightforward quantum
generalization of the respective classical calculation:

et~ Ml = 9. ()T (l)a"(l,OJTﬂ-(x')-9+(J’+)T (é)a't(l.o)TQ-(}")

[

" ag

(the underbraced expressions, (1, a~'5)Q-(x~) and Sh.(y“’)(m_l) are commutative because
fa~1b, ca='] = 0, as follows from (2.1), so we may interchange them)

= (asenr (5) @e0mr (§) )

x g~ ((1. OTR-(x7) - (1, O)T.Q_(y“))

= (m(x*)T @ Q:OMT: (é) ® (é))a"

xa™! ((1. 0e1,0.7TQ.x7)® TSZ..(y'))

= (mcy"")r ® 24T RG* - ) ( é) ® ( 3));;_—*

xa~! ((1. 0ol 0)‘R"(x' =yITR-(7)® Tﬂ-(x'))
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(make use of (B.1))

= Q.OMT (;) (T (}J) ™ (L OTR-G7) (1, O TR-(x)

PR -
s aa

. (q-—lﬂgcx-l- _ y+) + q1/28(y+ —JC+))

x (g720(x~ — y) + 4?80~ —x7))”

1

(interchange the underbraced quantities)

= e—Am(S.y)e-A;n(t..r) (q-[,J'ZG(x'i' _ y+) +g1f29£y+ _ x"!‘))

x (7200 —y )+ g0~ —x7) 7.

Putting the ends of this chain together, we obtain (2.12).
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