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Exact quantum S-matrix in the Liouville field theory 
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Alkor Technologies Inc., PO Box 116, St F’etersburg 199155, Russia 

Received 23 February 1995 

Abstract. Classical scstering in the Liouville field theory (LK) is essentially finite-dimensional, 
and in some cases the Classical S-matrix can be represented as a transformation of the Poisson 
group SL(2 ,  R). Motivated by this and using conjectural quantum annlogues of some ingredients 
of the classical model, we find an e x a t  quantum S-matrix without conshucting the quantum LFI 
in full. The quantum S-matrix is explicitly represented as a transformation of the quantum group 
SL,(Z, I), and For a particular implementation. the S-mhix is shown to be unitary (unitarily 
generated) 

1. Introduction 

It is widely believed that there is  no scattering in the Liouville field theory (LFT) in an 
infinite volume [I]. This belief, however, finds no confirmation at the classical level 
[Z, 31. Moreover, for naturally chosen phase spaces of the model, any field configuration 
exhibits non-trivial scattering, and the classical S-matrix takes the relatively simple form of 
a transformation of the Poisson group SL(2 ,  R) [3]. So it is reasonable to expect that the 
quantum S-matrix is non-trivial and ‘finite-dimensional’, and can be found exactly in closed 
form without explicitly constructing the quantum m. This would be especially interesting, 
because LFT still resists a satisfactory quantization, although the explicit classical solution 
is kKown. In the present paper we speculate on a possible quantum generalization of the 
classical model and succeed in representing the quantum S-matrix in closed form as a 
transformation of the quantum group SL,(Z, a). 

In the remainder of this section we recall the basic constituents of the classical model, 
our notation being as close to those of [3,4] as possible. In section 2 we propose a 
quantum generalization of the classical objects and carry out various checks. In particular, 
the asymptotic fields are introduced and their commutation relations are calculated. In 
section 3 the scattering transformation is derived, and it is shown that the S-matrix appears 
to be unitary (unitarily generated) in a particular implementation. 

A general solution to the Liouville equation 

Q,, - Q~~ + 4e2@ = 0 

which is an equation of motion for the LFT, has the form [4,5] 

e-@(lmx) = SI+(X+)TCL(~-) .  
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Here T is a 2 x 2 real manix (: 2)  with ad - bc = I ,  i.e. T E SL(2, R); xi = x f t are 
the cone coordinates on the two-dimensional Minkowski space; the 2-row Qt(x) and the 
2-column Q-(x )  are real and satisfy the Wronskian condition 

where P is a permutation matrix, i.e. 

In the case of a singular field Q, the right-hand side of the equality (1.1) is not positive 
definite. The corresponding sign function is assumed to be incorporated in the exponential 
function of the left-hand side. 

The phase space of the model, Poisson structure and Q may be chosen so that the 
following Poisson brackets hold (see [4]): 

(the square brackets designate the commutator: this formula equips SL(2, R) with the 
structure of the Poisson Lie group) 

where 

All the brackets (1.2), (1.3) are invariant under the action of the Poisson group SL(2, R). 
This property together with the piecewise constancy of r ( x )  ensures the local commutativity 
of the fundamental field Q [41. 
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2. Quantum analogues of the classical objects 

The quantum analogue of (1.2) is well known [6,7] and has the form 

R,T @ T = T 8 T R ,  (2.1) 

where 

q 0 0 0  
0 q-q- '  1 0 R, = q-'l2 

Here R is the Planck constant and the matrix elements of T, as well as those of below, 
are implied to be real (self-adjoint). We also assume that the quantum determinant of T is 
unity: 

(2.2) 
def det, T = a d  - q b c  = d a  -q- 'bc = 1. 

The quantum analogue of (1.3) looks as follows: 

where 

The commutation relations of the kind (2.3) were previously suggested in the context of 
the theory in a finite volume [PI. We assume that they are somehow implemented in the 
Hilbert space of the model in an infinite volume. The field is given by the same 
formula as in the classical case, i.e. by (1.1). Note that we do not make any attempt here to 
define the fundamental field @(?, x )  itself. A reasonable character of the assumptions made 
is supported by a number of checks that follow. 

(1) In the classical limit f i  -+ 0, (i/fi)[., .] + {., .) the commutation relation (2.1) turns 
into (1.2) due to the expansion 

P R ,  = 1 + ihr + O(Rz) f i  + 0. 

Likewise, the commutation relations (2.3) turn into (1.3) due to the expansion 

P R ( x )  = 1 - ihr(x)  + O@) f i  -+ 0. 

(2) The commutation relations (2.3) are self-consistent due to the Yang-Baxter equation 

1 8  R(x - y ) .  R(x  - 2 )  @ 1 . 1  8 R ( y  - Z )  .~ 

= R ( y  -z) 8 1.18 R(x - 2 )  . R ( x  - y )  8 1 
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which looks like the Yang-Baxter equation with a spectral parameter, but, for different 
locations of x ,  y and z ,  it reduces to various forms of the same Yang-Baxter equation (for 
Ry) without a spectral parameter: 

1 8  Ry .Ry  @ 1 . 1  @ Rq = Rq 8 1.1 8 Ry * Rq 8 1. 

This last equation expresses the self-consistency of (2.1). 
(3) All the commutation relations (2-11, (2.3) are invariant under the action of the 

quantum group SLq(2,  W). This property together with the piecewise constancy of R ( x )  
ensure8 the leenl commutativity of the Weld (LL) (see the next point). 

(4) The following enl,leuletien demonstram5 the fiemmutntivity of the Weld (L1) for the 
spneelike s p m t i e n  (y" E y 8 ) :  

e-e(f,%-*(n,Y) = n+(x* )~n- (x- )  n+(y+)Tn-(y-) 

= n+(x+) @ Q,(yf) ' T @ T ' n-(x-) @ n-(y-) 

= Q+(yt) @ Q+(x')R(xt - Yt)T @ TR-'(n- - )'-)Q-(y-) @ n-(~-) 

-I 

= n + ( y + ) ~ ~ _ ( y - )  Q+(x+)Tn-(x-)  = e-'~'~y)e-"('J) 

(the underbraccd quantity is equal to unity only for spacelike separation, i.e. for (xt - 
(5) The commutation relations (2.1), (2.3) are compatible with the reflections of space 

y+)(x- - y-) > 0). 

and time. This is ensured by the following properties of the R-matrix: 

See appendix A for details. 
(6) A plausible form of the quantum Wronskian condition looks as follows: 

where the colons designate some (unknown) regularization of the operator product with the 
coincident spatial points, and Pi-) is a quantum antisymmetrization matrix, i.e. 

0 0  0 0  

(2.6) 
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We believe that the condition (2.5) is not an essentially independent one but a consequence of 
the commutation relations (2.1). (2.3) in the case of irreducible representation. Nevertheless, 
this condition provides the normalization for the homogeneous equations (2.3). Apart from 
the usual reference to the classical limit, two arguments may be adduced in favour of (2.5). 
First, the equalities (2.5) are compatible with the reflections of space and time. Second, 
they are invariant under SL,, (2, W), which may be verified by using the following relations: 

(2.7) 

Lat u8 RQW introduceasymptotic Welds by the aamo formulae us in the classi~ul caee [a]: 

Pi-)T 8 T s Pi-) det,, T T 8 TPi-) = Pj-) det, T. 

e=a,n(''a) = 6=2*@*)T(;)a=l(i, e ,T i=@-)  = n*(x*)Fn=@=) ~ @,e) 

e - A ~ ~ l ( ' ~ ~ )  - * * ( P ) T @ d = y O ,  l ) T n - ( x - )  E n+(n*)?n,(x=) (2.9) 

where the diagonal matrix elements of T, U and d, are assumed invertible (see the discussion 
of this assumption in the next section), and the notation for two matrices is introduced: 

These matrioes are real and satisfy the same commutation relation as T (2.1) with the same 
R,,, but with 

I I 
dct, T = 0 det,, T = 0 (2.10) 

(irrespective of the value of det,, T). In particular, this means that the asymptotic fields are 
real and locally oommutative. Moreover, we can calculate their commutation relations in 
full. To accomplish this we need one formula, which will be now derived. It follows from 
the definition of PJ-) (2.6) and its property (2.7) that 

RqT 8 T = T 0 Ti?, = q1I2T 8 T - q-'/'(q t q-')PJ-)  det, T. 
Thus, taking into account (2.10) we obtain 

~ $ 8  r" = r"8 FR, = q@Po r" 
or equivalently 

~ ( ~ ) r " ~ r " = r " ~ r " ~ ( x ) =  ( q - ' / z e ( x ) + g ' / 2 e ( - x ) ) r " 8  r". (2.11) 
U 

The same is true for r" replaced by T. The calculation of the commutation relation of the 
in-fieid (2.8) runs much the same as in the caseof $e field e-*, see point (4) above, but 
now the underbraced quantity is multiplied by T 8 T from the left, and the relation (2.11) 
immediately leads to the following commutation relation: 

e-Aln(f,x)C-AInGtg) = C-Ai,(r,Y)C-Al.(f.x) (q-%(x+ - y+) t qllze(yt - x + ) )  

x (q-l/ze(x- - Y - )  t q'/ze(g- - x- ) ) - '  

q-' if ( x  - y ) l -  (t - s)z < o t > s 
if ( x  - y ) z  - (t - s)z > 0 

if (x - - ( t  - s ) ~  < 0 t < s. 

- e-Alm(~,~)e-A~df ,x)  (2,12) - 
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In appendix B we give another derivation of (2.12), which is closer to the respective classical 
calculation [3] and may be useful for other models. Note that (2.12) is the very relation one 
could expect to obtain for e-Ah starting from the standard free-field commutation relation 
for Ai,: 

i 
-[Ain(t, x ) .  Ai,(s, y)] = :sign(x* - y*) - ;sigu(x- - y-). 
ii 

Using (2.11) with T" replaced by r", we may prove the commutation relation (2.12) for the 
out-field as well. 

The question as to whether or not the field e-" (1.1) interpolates between the fields 
e-Ain and defined by (2.8) and (2.9) is unanswerable without precise knowledge of 
the specific representation of the algebra (2.3). Here we only note that in the classical case 
the asymptotic condition for the exponents looks as follows: 

e-O(l.x+ur) - e-Ain(t .r tvt)  = 0 (1) 

Both exponents grow in this limit, so for the fields themselves, we have 

~ ( t , x + u t ) - A j , ( t , x + u t ) - + O  t + - w  foral lx ,uEW, IuI < l .  

~. - 

t -+ -CO for all x ,  U E R, IuI < 1. 

3. Quantum S-matrix 

By definition, the scattering transformation maps the in-field (2.8) onto the out-field (2.9). 
As may be readily noticed, such a mapping non-trivially transforms only T, leaving S& 
unchanged (provided bc is invertible). Denote the restriction of the scattering transformation 
on T as S', then it looks as follows: 

The invertibility of ad = 1 + qbc implied here and also assumed in section 2, is discussed 
below. It should be emphasized, however, that the non-invertibility of bc does not prevent 
the S-matrix from existing, but only means that it cannot be represented in such a simple 
form as (3.1). The formula (3.1) for the quantum m S-matrix is the main achievement of 
the paper. 

Let us discuss the problem of invertibility of a, b, c, and d provided that they are 
implemented as self-adjoint operators in the Hilbert space 'H. The commutation relation 
(2.1) in terms of the matrix elements of T looks as follows: 

ab = qba ac =~qca bd = qdb cd = qdc 

bc = cb 
(3.2) 

ad - da = (q - q-')bc 

(recall that 141 = 1 and in addition we now assume q # &l, i.e. 0 c Ihl c 2z). First of 
all, a precise sense in which these commutation relations are understood must be specified. 
We shall assume that there exists a linear set D dense in 'H and such that: 
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(1) D c D(a)  n D(b) n D(c)  n D(d);  
( 2 ) a D c  D,  bD c D ,  cD c D, a n d d D C  D; 
(3) for all f E D, abf = q b a f ,  acf = q c a f ,  bdf = q d b f ,  cdf = q d c f ,  bcf = cbf 

(4) the operators a,  b, c and d are essentially self-adjoint on D; 
(5) Pf’D c D (z  = a,  b ,  c,  d ) ,  where P t )  is the orthogonal projector on the proper 

Under these assumptions the Hilbert space ‘H decomposes into an orthogonal sum: 

andadf - d a f  = ( q - q - ’ ) b c f ;  

subspace of the operator z,  corresponding to the eigenvalue 1. 

5 

‘ H = $ X j  (3.3) 
j=1 

where ‘H j ,  j = 1, 2, 3, 4, 5 are invariant subspaces of the operators a,  b, c, and d such 
that: 

(1) in ‘HI the operators a,  b, c, and d do not have a pointwise spectrum; 
(2) in ‘Hz the operators a,  b and d do not have a pointwise spectrum, and c = 0; 
(3) in ‘H3 the operators a ,  c and d do,not have a pointwise spectrum, and b = 0; 
(4) in ‘H4 the operators a and d are invertible, and b = 0, c = 0; 
(5) in ‘ H 5  deb T f  = 0 for all f E D .  

Obviously,. the subspace “5 cannot appear in the Hilbert space of representation of the 
algebra (3.2) with deb T = 1. In particular, this means that in the representations with 
deb T = 1 the operators a and d are always invertible, thus, we may legitimately use 
expressions (2.8) and (2.9) for the asymptotic fields. It is interesting to compare this with 
the situation in the classical model, where a and d may vanish on a zero-measure portion 
of the phase space (in the case of singular field). For such exclusive field configurations 
the asymptotic fields possess non-d’Alembertian components [31. 

In the case of an irreducible representation, the decomposition (3.3) consists of only a 
single summand. If it is X4, it must be one dimensional, so that a and d = l/a are nothing 
but real numbers. This is the only representation of (2.2), (3.2) by the finite-dimensional 
matrices, because in the spaces X1,2,3 the operators a and d possess a continuous spectrum. 
In the space ‘HI all the relations (3.2)’ are a consequence of 

ab = qba. (3.4) 

Indeed, the combination x = cb-I commutes with everything, so in an ineducible 
representation it must be a non-zero real number. For given x E R, x # 0 and a and 
b obeying (3.4), introduce c and d as follows: 

c ~ =  x b  d = ad(1 + xqb’). (3.5) 

Then (2.2) and (3.2) are satisfied. The relation (3.4) is the only independent one in the 
space ‘Hz as well. This space may be regarded as the limiting case of ‘HI when x = 0. 
Likewise, the space X3 may be regarded as the limiting case of ‘HI when x = w, the only 
independent relation being ac = qca. 

Only the space 711 meets the invertibility condition of bc needed for the scattering 
transformation to be represented in the form (3.1). Let us describe the S-matrix (3.1) in 
more detail for a particular representation of (3.2) of the type ‘HI. Let P = (fi/i)d/dr and 
Q = x be the standard differentiation and multiplication operators in XI = Lz(W). Define 

a = e-p b = eo/’. 
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These operators together with c and d given by (3.5) satisfy the relations (2.2) and (3.2), 
x being a parameter of the representation. As a common domain D one can choose a 
set of functions of the kind g ( x )  exp(-ix2), where g(n) is an entire function of order 
not exceeding 1. Provided x > 0, the S-matrix (3.1) in this representation is unitarily 
generated, i.e. 

a’ = s-las b’ =: s-‘ bs c’ = s-‘ cs d’ a s-‘ds (3.6) 

where s is a multiplication operator: s f ( x )  = s ( x ) f ( x )  for all f E Lz(B), the function 
$01) being given by 

The unitary operator s is defined by (3.6) uniquely up to multiplying the function s(x) by 
a unitary constant, 

In the described representation of the algebra (3.2) we have a 5 0, b > 0. The unitarity 
of the scattering requires that x > 0, and hence c > 0, d > 0 too. Recall that in the 
classical model the inqualities a > 0, d > 0, b 2 0, c 2 0 (or equivalently a .c 0, d e 0, 
b C 0, c < 0) constitute a necessary condition for the local fields to be non-singular [4]. At 
the same time, there are difficulties in Hamiltonian interpretation of the singular asymptotic 
fields [3]. So the necessity to choose x > 0 may indicate that the quantum analogues of 
the singular fields are ill-defined, at least some of them. 

A similar representation of the algebra (3.2) in Lz(R) with x P 1 was described in [6]. 
In that representation the matrix T looks a bit more symmetric: 

1 -  e - p w T s  e-PIZ ,Qlz 
T = (  

XCQ’2 e p 4 f i T z  ep/z 

This implementation of the algebra (32) is unitarily equivalent to that described above, and 
may be obtained from the latter by the similarity transformation ( 8 )  3 &(.)U, the operator 
U being multiplication by the function 

The S-matrix in this representation is described by the same formulae (3.6), (3.7). 

Appendix A 

The time refiection 5 is an antilinear automorphism of the algebra (2,1)-(2.3) that acts as 
follows: 

@‘(t,  x) = e(-?, x) T7 =BIT%, 
n;(x) = slI(X)U! nyx) =uln;(x)* 

That 5 is an antilinear automorphism is ensured by the second equality in (2.4). 
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The space reflection U is a linear automorphism of the algebra (2.1)-(2.3) that acts as 
follows: 

W ( t ,  x )  = @ ( t ,  - x )  T'7 = (-l)n-TT(-lp 

n;(x) = s27_(-x)(-1)"- nl(x) = (-l)"+nT,(-x) 

where, on the classical level, n+ is the number of eigenvalues of the zero-energy SchrBdinger 
equation whoso pair of independent solutions is CZ+(x). n- has an analogous meaning. In the 
quantum model, nh are supposedly selEadjoint operaters wifh a diserefe speehum, which 
commute with avaryfhing, so in an i d u e i b l s  rspasfintafion bay  must bfi non-negative 
InbgeFS. The eendition 
is a kle8F automorphism is ~ R S U F ~  by L e  W~at equality in (2,4), 

- 0 is Reci3SSaPy feP the bfid fields tO be ROR=dRgLIhP, That B 

Appendix B 

Here we give another derivation of the commutation relation of the in-field. The column (A) 8 (A) and the row (1,O) @ (1, 0) are eigenvectors of the mahices R ( x )  and R - ' ( x ) ,  i.e. 

( i ,o) ~ ( i , o ) ~ - ~ ( x )  = (q- l /zs(x) tql/ze(-x))-'(i,o)o (LO). 

The following chain of transformations is nothing but a straightforward quantum 
generalization of the respective classical calculation: 

e-A.(l.x)e-A.DIY) = n &+)T (A) d ( I , O ) T n - ( x - ) .  n+(y+)T (A) a-f(l,O)Tn-(y-) 
L- 

(the underbraced expressions, (1, a-'b)n-(x-)  and n+(yt)(oi-,), are commutative because 
[a-lb, C U - ' 1  = 0, as follows from (2.1). so we may interchange them) 

) x U-' ((1.0) 0 (LO) * Tn-(x-)  o Tn-(y-) 
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(make use of (B.l)) 

= Q'(Y+)T (;) 'G+(X')T (;).-I .a-'(l,O)rn-(y-).(l,O)TQ_(x-) -- 
x (q-"%(x+ - y+) + qt/%(y+ - x'))  

x (q-'P3(x- - y-) +q'/Ze(y- - x-))-I 

(interchange the underbraced quantities) 

= e  - A d ~ . y ) ~ - A d t . x )  (q-"~e(x' - yf) + q%@+ - x + ) )  

x (q-%(x- - y-) + gI/Ze(y- -.-))-I. 

Putting the ends of this chain together, we obtain (2.12). 
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